(1) |
$$ \begin{align}
(5x^2-10x)\div 5x &=5x^2\div 5x -10x\div 5x \\
&=\frac{5x^2}{5x}-\frac{10x}{5x} \\
&=\frac{5\times x\times x}{5\times x}-\frac{10\times x}{5\times x} \\
&=\frac{\bcancel 5\times \bcancel x\times x}{\bcancel 5\times \bcancel x}-\frac{ ^2 \bcancel{10}\times \bcancel x}{\bcancel 5\times \bcancel x} \\
&=x-2
\end{align}$$
$$ \left[ \begin{align}
(5x^2-10x)\div 5x &=(5x^2-10x)\times \frac{1}{5x} \\
&=5x^2\times \frac{1}{5x} - 10x\times \frac{1}{5x} \\
&=x-2
\end{align} \right]$$
|
(2) |
$$ (8a^2-2a)\div 2a=4a-1 $$
|
(3) |
$$ (6ax-3ay)\div (-3a)=-2x+y $$
|
(4) |
$$ \begin{align}
(-10x^2+x)\div \frac{x}{2} &=(-10x^2+x)\times \frac{2}{x} \\
&=-20x+2
\end{align} $$
|
(5) |
$$ \begin{align}
(3x^2+6xy)\div \left( -\frac{3}{4}x \right) &=(3x^2+6xy)\div \left( -\frac{3x}{4} \right) \\
&=(3x^2+6xy)\times \left(-\frac{4}{3x} \right) \\
&=-4x-8y
\end{align} $$
|
(6) |
$$ \begin{align}
(15x^2y-9xy^2)\div \frac{3}{2}xy &= (15x^2y-9xy^2)\times \frac{2}{3xy} \\
&=10x-6y
\end{align} $$
|