(1) |
$$ \begin{align}
(x-5y)^2 &= x^2-5xy\times 2+(-5y)^2 \\
&= x^2-10xy+25y^2
\end{align}$$ |
(2) |
$$ \begin{align}
(a+4b)^2 &= a^2+8ab+16b^2
\end{align}$$ |
(3) |
$$ \begin{align}
(4x-y)^2 &= 16x^2-8xy+y^2
\end{align}$$ |
(4) |
$$ \begin{align}
(2x+3y)^2 &= 4x^2+12xy+9y^2
\end{align}$$ |
(5) |
$$ \begin{align}
\left(a+\frac{1}{2}b \right)^2 &= a^2+\frac{1}{2}ab\times 2+\left(\frac{1}{2}b \right)^2 \\
&= a^2+ab+\frac{1}{4}b^2
\end{align}$$ |
(6) |
$$ \begin{align}
(-x+2y)^2 &= (-x)^2-2xy\times 2+(2y)^2 \\
&= x^2-4xy+4y^2
\end{align}$$ |